报告题目:S.-S. Chern and minimal surfaces, etc.

报告人:马力(北京科技大学)

时间:2024年9月7日(星期六)15:30-16:30

地点:苏州大学天赐庄校区本部维格堂319



摘要:Minimal surface theory is an important subject in Differential Geometry and it can be used to solve open problems in Topology and Mathematical Physics, etc. Some influential contributions from S.-S. Chern have made this area rich and we try to review some of them. We first introduce the minimal submanifold in Euclidean space and we mention Chern's works on minimal surfaces. We then consider the moving frame method due to Darboux-Cartan, used very often by S.-S. Chern. We present the simpler proof of S.-S. Chern for the 2-d Bernstein theorem. Some new topics about soliton problems to mean curvature flow and related Bernstein type results will be discussed.



报告人简介:马力, 北京科技大学教授,博士生导师。1989年博士毕业于中科院数学所,师从王光寅研究员和丁伟岳院士;1991年北京大学数学系博士后出站,合作导师张恭庆院士。马力教授主要从事几何分析和非线性分析、偏微分方程的研究,近期在黎曼几何的重要问题比如Yamabe流、Ricci流等方面取得了一系列重要的研究成果。在Adv. Math., J. Math. Pures Appl., Arch. Ration. Mech. Anal., J. Funct. Anal., JDE, Comm. Math. Phys., CVPDE等著名学术期刊上发表多篇论文。长期担任两个国际数学SCI杂志(AGAG, JPDOA)的编委。




欢迎参加!




邀请人:王奎、张影