报告题目:Convergence of renormalized finite element methods for heat flow of harmonic maps
报告人:王冀鲁,哈尔滨工业大学(深圳)教授
报告时间:2023.05.22下午2:00-3:00
腾讯会议:127-904-093
会议密码:123456
会议链接://meeting.tencent.com/dm/m6Tp0vfPcVXT
摘要:A linearly implicit renormalized lumped mass finite element method is considered for solving the equations describing heat flow of harmonic maps, of which the exact solution naturally satisfies the pointwise constraint $|\m|=1$. At every time level, the method first computes an auxiliary numerical solution by a linearly implicit lumped mass method and then renormalizes it at all finite element nodes before proceeding to the next time level. It is shown that such a renormalized finite element method has an error bound of $O(\tau+h^{r+1})$ for tensor-product finite elements of degree $r\ge 1$. The proof of the error estimates is based on a geometric relation between the auxiliary and renormalized numerical solutions. The extension of the error analysis to triangular mesh is straightforward and discussed in the conclusion section.
报告人简介:王冀鲁,哈尔滨工业大学(深圳)教授,此前为北京计算科学研究中心特聘研究员。王冀鲁博士的研究兴趣为偏微分方程数值解,包括关于浅水波方程、多孔介质中不可压混溶驱动模型、薛定谔方程以及分数阶方程的数值方法。曾入选国家高层次青年人才计划,目前分别主持和参与国家自然科学基金面上项目和重点项目。
邀请人:杜锐