系列讲座
报告人:王子鹏 (陕西师范大学)
韩勇 (清华大学)
介绍:Schramm-Loewner Evolution (SLE) is a family of random curves in the plane, indexed by a parameter $/kappa/geq 0$. Their introduction by Oded Schramm in 1999 was a milestone of modern probability theory. The lecture will focus on the definition and basic properties of SLE. The key ideas are conformal invariance and a certain spatial Markov property, which make it possible to use Ito calculus for the analysis. In particular we will try to show the Rohde-Schramm's phases theorem, then explore the properties of the curves for a number of special values of $/kappa$ which will allow us to relate the curves to other conformally invariant structures.
报告时间地点:
1.Integration with respect to Brownian motion (王子鹏)
2018年10月17日,9:00-12:00,维格堂304
2.Complex Brownian motion and definitions of SLE (王子鹏)
2018年10月18日,9:00-12:00,维格堂319
3.Brownian intersection exponent and Mandelbrot conjecture (韩勇)
2018年10月19日,9:00-12:00,维格堂113
4.Brownian measures and H-excursion (韩勇)
2018年10月24日,9:00-12:00,维格堂304
5.Brownian boundary bubbles and loop measures (韩勇)
2018年10月25日,9:00-12:00,维格堂319
6.Coupling of Gaussian free field and SLE (王子鹏)
2018年10月26日,9:00-12:00,维格堂113
7.Rohde-Schramm's phases theorem (王子鹏)
2018年10月31日,9:00-12:00,维格堂304
8.Holder continuity and dimensions of SLE curves (王子鹏)
2018年11月1日,9:00-12:00,维格堂319
9.SAW and SLE_{8/3} (王子鹏)
2018年11月2日,9:00-12:00,维格堂113