系列讲座

 


报告人:王子鹏 (陕西师范大学)

        韩勇   (清华大学)

 

介绍:Schramm-Loewner Evolution (SLE) is a family of random curves in the plane, indexed by a parameter $/kappa/geq 0$.  Their introduction by Oded Schramm in 1999 was a milestone of modern probability theory. The lecture will focus on the definition and basic properties of SLE. The key ideas are conformal invariance and a certain spatial Markov property, which make it possible to use Ito calculus for the analysis. In particular we will try to show the Rohde-Schramm's phases theorem, then explore the properties of the curves for a number of special values of $/kappa$ which will allow us to relate the curves to other conformally invariant structures.

 

报告时间地点:

 

1.Integration with respect to Brownian motion             (王子鹏)

2018年10月17日,9:00-12:00,维格堂304

 

2.Complex Brownian motion and definitions of SLE        (王子鹏)

2018年10月18日,9:00-12:00,维格堂319

 

3.Brownian intersection exponent and Mandelbrot conjecture  (韩勇)

2018年10月19日,9:00-12:00,维格堂113

 

4.Brownian measures and H-excursion                    (韩勇)

2018年10月24日,9:00-12:00,维格堂304

 

5.Brownian boundary bubbles and loop measures            (韩勇)

2018年10月25日,9:00-12:00,维格堂319

 

6.Coupling of Gaussian free field and SLE                (王子鹏)

2018年10月26日,9:00-12:00,维格堂113

 

7.Rohde-Schramm's phases theorem                     (王子鹏)

2018年10月31日,9:00-12:00,维格堂304

 

8.Holder continuity and dimensions of SLE curves          (王子鹏)

2018年11月1日,9:00-12:00,维格堂319

 

9.SAW and SLE_{8/3}                                (王子鹏)

2018年11月2日,9:00-12:00,维格堂113