报告人:任维清 教授 (新加坡国立大学、新加坡科技局)


时间:1112号(周一)上午10:00-11:00

地点:数学楼307


摘要 : The committor function is a central object of study in understanding transitions between metastable states in complex systems. It has a very simple mathematical description – it satisfies the backward Kolmogorov equation. However, computing the committor function for realistic systems at low temperatures is a challenging task, due to the curse of dimensionality and the scarcity of transition data. In this talk, I will present a computational approach that overcomes these issues and achieves good performance on complex benchmark problems with rough energy landscapes. The new approach combines deep learning, importance sampling and feature engineering techniques. This establishes an alternative practical method for studying rare transition events among metastable states of complex, high dimensional systems.


报告人简介:


任维清,新加坡国立大学教授及新加坡科研局高性能计算研究院资深科学家。2002年毕业于纽约大学Courant数学科学研究所并获博士学位。先后在普林斯顿高等研究院和普林斯顿大学从事博士后研究工作,2005年至2011年在纽约大学Courant数学科学研究所担任助理教授。任教授的研究领域主要为稀有事件模型,多尺度问题的理论和数值方法,以及多相流体动力学。任教授曾获Alfred P. Sloan Research Fellowship (2007) 和冯康科学计算奖(2015)。