1.报告题目:Quantum GIM of N-fold affinization and quantum toroidal algebra

报告人:郜云教授(加拿大约克大学)

报告时间:6月1日(星期四)14:00-14:50

报告地点:金融工程中心报告厅105

摘要:We introduce the notion of quantum N-toroidal algebras as natural generalization of the quantum toroidal algebras as well as extended quantized GIM algebras of N-fold affinization. We show that the quantum N-toroidal algebras are quotients of the extended quantized GIM algebras of N-fold affinization, which generalizes a well-known result of Berman and Moody for Lie algebras.

报告人简介:郜云教授是加拿大约克大学教授,德国洪堡学者。主要从事李代数,量子群,表示论及相关问题的研究。

2. 报告题目:Lattice structure of vertex algebra

报告人: 景乃桓教授(北卡州立大学)

报告时间:6月1日(星期四)14:50-15:40

报告地点:金融工程中心报告厅105

摘要:The integral form of VOA was well-studied by Dong and Griess for the finite auotmorphism group of VOA. We will show that the general divided powers of vertex algebras of lattice types preserve the integral forms spanned by Schur functions indexed by colored partitions. This provides an analog of Kostant's Z-forms and Lusztig's q-Z-form for lattice types VOA. We also show that the Garland operators preserve the integral forms. Joint work with H. Huang.

报告人简介:景乃桓,美国北卡州立大学终身教授,博士生导师,德国洪堡学者,美国富尔布莱特学者。主要从事无限维李代数、量子群、表示论、代数组合和量子计算方面的研究工作。特别地,与耶鲁大学Frenkel教授合作,首次构造仿射量子代数的顶点表示,是该领域的开创性工作,发表在数学顶尖刊物Invent Math.上;研究对称多项式函数时引入的“景氏算子”,被著名数学家MacDonald评论为对称函数的新研究方法。在国际著名期刊上发表论文180多篇,编辑著作5部。

3. 报告题目: Simple smooth modules over the superconformal current algebra

报告人:刘东教授(湖州师范学院)

报告时间:6月1日(星期四)15:50-16:40

报告地点:金融工程中心报告厅105

摘要:In this talk, we classify simple smooth modules over the superconformal current algebra $\frak g$. More precisely, we first classify simple smooth modules over the Heisenberg-Clifford algebra, and then prove that any simple smooth $\frak g$-module is a tensor product of such modules for the super Virasoro algebra and the Heisenberg-Clifford algebra, or an induced module from a simple module over some finite-dimensional solvable Lie superalgebras. As a byproduct, we provide characterizations for both simple highest weight $\frak g$-modules and simple Whittaker $\frak g$-modules. Additionally, we present several examples of simple smooth $\frak g$-modules that are not tensor product of modules over the super Virasoro algebra and the Heisenberg-Clifford algebra. This is a joint work with Profs Y. Pei, L.Xia and K.Zhao.

报告人简介:刘东,男,湖州师范学院教授,学报编辑部主任,新疆大学兼职博士生导师、浙江省“新世纪151人才”(第二层次),九三学社社员,中国教育数学专委会常务理事。研究方向为李代数,近年来主持国家自然科学基金面上项目3项、浙江省自然科学

基金项目、钱江人才计项目4项(含自然科学基金重点项目一项)。在《Proc. Royal Soc. Edinberg》、《Commun. Comtemp. Math.》、《J.Alg.》、《Alg. Rep. Theory》等国际核心期刊上发表SCI收录论文40多篇。

4. 报告题目:Characterization of simple smooth modules

报告人:赵开明教授(加拿大Wilfrid Laurier University)

报告时间:6月1日(星期四)16:40-17:30

报告地点:金融工程中心报告厅105

摘要:We characterize simple smooth modules over some infinite-dimensional Z-graded Lie algebras. More precisely, we prove that if one specific element of a Z-graded Lie algebra L locally finitely acts on a simple L-module V, then V is a smooth L-module. These infinite-dimensional Z-graded Lie algebras include the Virasoro algebra, affine-Virasoro algebras, the (twisted, mirror) Heisenberg-Virasoro algebras, the planar Galilean conformal algebra, and many others. This result for untwisted affine Kac-Moody algebras holds unless we change the condition for ``locally finitely to ``locally nilpotently.

报告人简介:赵开明教授是加拿大Wilfrid Laurier大学教授、河北师范大学兼职教授博导,主要研究方向为李代数。主持过中科院百人计划及多项国家自然科学基金。他在 Adv. Math., J. Lond. Math. Soc., Math. Z., Selecta Math. , Israel J. Math., J. Algebra, Doc. Math., Math. Res. Lett. 等国际刊物上发表过140多篇论文,被引用1700多次。


邀请人:吕仁才, 蔡延安