报告题目:Barron Spaces and the Application to Neural Network Approximation
报告人:明平兵研究员,中科院计算数学所
时间: 2024年11月8日周五上午10:00-11:00
地点:精正楼103
摘要:We shall discuss various Barron type spaces arising from neural network. The relations among them will be clarified, and we also establish the relationship among the spetral Barron space and the classical function spaces such as Besov space, Sobolev space and Bessel potential space, which partly answer the question proposed by Girosi and Anzellotti in 1993. As an application, certain new approximation results for the shallow neural network and deep neural network with the Barron class as the target function space will be proved. This is a joint work with Yulei Liao (National University of Singapore) and Yan Meng (RUC).
个人简介:明平兵2000年博士毕业于中国科学院数学与系统科学研究院,目前担任中国科学院数学与系统科学研究院研究员、科学与工程计算国家重点实验室副主任。曾获得国家杰出青年基金(2014)、科技部中青年科技创新领军人才计划(2019)、第十五届“冯康科学计算奖”(2023)、中国工业与应用数学学会会士(2024)。在固体多尺度模型的数学理论、多尺度算法与分析、弹性问题的稳健有限元方法等领域有重要贡献。
邀请人:岳兴业