学术报告1
题目:Filling foliations and an application in dynamical system
报告人:余斌(同济大学)
时间:2019年11月30日(星期六)09:50—10:50
地点:苏州大学本部精正楼306
摘要:In this talk, we will introduce a combinatorial surgery (due to Thurston, Ghys, Fried) to build a new taut foliation from an old one when we do Dehn-filling. This surgery is powerful in foliation theory on 3-manifolds. Then we will introduce an application about it: use it as a main ingredient to classify non-transitive Anosov flows on Franks-Williams manifold. This is a joint work with Jiagang Yang.
学术报告 2
题目:超平面构型的和乐李代数
报告人:刘晔(西交利物浦大学)
时间:2019年11月30日(星期六)11:10—12:00
地点:苏州大学本部精正楼306
摘要:我们介绍超平面构型的和乐李代数的定义,以及与构型补空间拓扑、组合的关系。并重点研究纤维型构型的和乐李代数的结构,指出其与基本群结构的相似性。后者是与郭威力(北京化工大学)的合作研究。
学术报告 3
题目:来自广义构型空间的辫子
报告人:吕志(复旦大学)
时间:2019年11月30日(星期六)13:30—14:30
地点:苏州大学本部精正楼二楼学术报告厅
摘要:结合Artin的经典思想,我们考虑了来自广义构型空间的辫子,如此的辫子与通常的辫子有所区别。我们讨论了如此辫子的群结构,给出了同伦表达;尤其我们定义的轨道辫子的群与orbifold基本群有本质的关联。
学术报告 4
题目:On 3-submanifolds of $S^3$ which admit complete spanning curve systems
报告人:李风玲(大连理工大学)
时间:2019年11月30日(星期六)14:50—15:40
地点:苏州大学本部精正楼二楼学术报告厅
摘要:Let $M$ be a compact connected 3-submanifold of the 3-sphere $S^3$ with one boundary component $F$ such that there exists a collection of $n$ pairwise disjoint connected orientable surfaces $\mathcal S=\{S_1,\cdots, S_n\}$ properly embedded in $M$,$\partial{\mathcal S}=\{\partial S_1,\cdots, \partial S_n\}$ is a complete curve system on $F$. We call $\mathcal S$ a complete surface system for $M$, and $\partial \mathcal{S}$ a complete spanning curve system for $M$. In the present paper, we show that the equivalent classes of complete spanning curve systems for $M$ are unique, that is, any complete spanning curve system for $M$ is equivalent to $\partial \mathcal S$. As an application of the result, we show that the image of the natural homomorphism from the mapping class group ${\mathcal M}(M)$ to ${\mathcal M}(F)$ is a subgroup of the handlebody subgroup ${\mathcal H}_n$. This is joint work with Fengchun Lei and Yan Zhao.