报告人:孙哲(中国科学技术大学)
时间:2023年11月13日(星期一) 13:00-14:30
地点:苏州大学天赐庄校区维格堂319
摘要:Fock and Goncharov introduced a pair of mirror moduli spaces associated to G and G^L which generalized the Teichmüller space and the decorated Teichmüller space, and they proposed a duality: the canonical basis of the regular function ring of one space X is parameterized by the tropical integral points of its mirror X^V. In this talk, I will explain my joint work with Linhui Shen and Daping Weng, where we introduce the topological asymmetric intersection numbers between webs on the surfaces to provide the duality pairings and the map from webs to tropical points. We prove that the map is the same bijection as the previous one obtained by Douglas and myself for SL3. We relate the cluster algebra and skein algebra by this intersection number and prove the mutation equivariance, where the flip equivariance is a consequence.
报告人简介:孙哲,中国科学技术大学威尼斯人 特任教授。2008年获得数学学士学位(武汉大学),2014年获得数学博士学位(巴黎第十一大学)。2021年入选国家级青年人才项目。研究领域为几何拓扑,目前研究课题为高阶Teichmüller理论。研究论文发表在GAFA等国际数学顶级期刊。
欢迎参加!
邀请人:张影