报告题目:Non-hyperbolic ergodic measures with support in the whole homoclinic classes
报告时间:2015年5月21日09:00-09:50
主讲人: 程诚 北京大学 博士
报告地点: 精正楼二楼报告厅
摘要 We prove that there exists a residual subset $mathscr{R}$ of $diff^1(M)$ such that for any $finmathscr{R}$, if some homoclinic class $H$ of $f$ contains saddles of different indices, then there is a non-hyperbolic ergodic measure $mu$ of $f$ such that $supp (mu)=H.$ This result strengthens [DG] and [BDG].
报告题目:Upper semi-continuity of entropy map for nonuniformly hyperbolic Systems
报告时间:2015年5月21日09:50-10:40
主讲人: 廖刚 北京大学博士后
报告地点: 精正楼二楼报告厅
摘要 We study the entropy map of nonuniformly hyperbolic systems in two settings: C^{1+domination} and C^{1+Holder}. The upper semi-continuity holds for C^{1+domination} systems and for C^{1 +Holder} systems with the same hyperbolic rate.
报告题目:Livsic measurable rigidity for C1 generic volume-preserving Anosov systems
报告时间:2015年5月21日10:50-11:40
主讲人: 杨云 博士 北京大学威尼斯人
报告地点: 精正楼二楼报告厅
摘要 Let T be a diffeomorphism on a compact manifold M and φ be a Hölder continuous function on M. We call φ(x)=Φ(T(x))-Φ(x) the cohomological equation. The following property is called Livsic measurable rigidity:
If there is a measurable solution, then there is a continuous solution.
In this talk, we will talk about Livsic measurable rigidity for C1 generic volume-preserving Anosov systems.
报告题目:The Hausdorff dimension for an ergodic measure of C1-diffeomorphism
报告时间:2015年5月21日14:00-14:50
主讲人: 王娟 博士 苏州科技学院数学系
报告地点: 精正楼二楼报告厅
摘要 We provide the Hausdorff dimension estimation for an ergodic hyperbolic measure of C1-diffeomorphism on m-dimensional compact Riemannian manifold with the assumption that its Oseledect‘s splitting is a dominated splitting.
报告题目:Anosov diffeomorphisms
报告时间:2015年5月21日14:50-15:40
主讲人: 何宝林 讲师 上海师范大学
报告地点: 精正楼二楼报告厅
摘要 We give the characteristic of Anosov diffeomorphisms on T^n and R^n。
报告题目:Perturbation theory for tridiagonal competitive-cooperative system
报告时间:2015年5月21日15:40-17:30
主讲人: 方春 研究员 芬兰赫尔辛基大学
报告地点: 精正楼二楼报告厅
摘要 In this talk, we propose a skill to construct a discrete Lyapunov function for perturbed tridiagonal competitive-cooperative system. By using this function, we study the structure of omega limit set of the perturbed system.