Title: Some results on  foliations with Kodaira dimension one
报告人:陆俊 教授 (华东师范大学)
报告时间:2016年4月8日(周五)下午2:00-3:00
报告地点:精正楼 211 报告厅
 
Abstracts:  A foliation is a global section of the differential sheaf tensorring  a  line bundle. It can also be regarded as a differential equation.  For example, a  fibration  on a surface gives a  foliation with a meromorphic first integral.   One can classify  all foliations by so-called Kodaira dimension.   In this talk, we will investigate the foliations with Kodaira dimension one (e.g., Riccati foliations). In this case, there is  an adjoint  fibration. We will  describe precisely all singular fibers of the  adjoint fibration.  As an application, we will prove that a fibration with  two singular over $P^1$  gives a Riccati foliation and compute its Mordell-Weil group in a joint work with C.Gong and S.-L. Tan.  Furthermore, we can  classify such fibrations on a rational surface.