报告人 Renaud Leplaideur(Universite de Brest)
报告时间 2017年4月12日09:30-10:30
报告地点 维格堂319
报告摘要 In this talk, I shall focus on the pure mathematical viewpoint and explain the connection between Gibbs measures and the unique ergodicity of the horocyclic flow on Riemmannian manifolds with negative curvature.
报告人 Renaud Leplaideur(Universite de Brest)
报告时间 2017年4月12日10:30-11:30
报告地点 维格堂319
报告摘要 In this talk, I shall explain the connection between Gibbs measures within the ergodic viewpoint on the one hand and the mean-field theory (Curie-Weiss models) on the other hand. I shall in particular explain the differences between the notions of phase transitions.
报告人 Renaud Leplaideur(Universite de Brest)
报告时间 2017年4月12日11:30-12:30
报告地点 维格堂319
报告摘要 I In the last talk, I shall give the summary of what I have talked on thermodynamic formalism.
报告人 Renaud Leplaideur(Universite de Brest)
报告时间 2017年4月13日09:30-10:30
报告地点 维格堂319
报告摘要 In the first talk, I will basic definitions and properties about Kupka-Smale theory..
报告人 Renaud Leplaideur(Universite de Brest)
报告时间 2017年4月13日10:30-11:30
报告地点 维格堂319
报告摘要 In the second talk, I will show the history of Kupka-Smale theory and I shall explain why our example plays an important role in this area.
报告人 Renaud Leplaideur(Universite de Brest)
报告时间 2017年4月13日11:30-12:30
报告地点 维格堂319
报告摘要 In the last talk, I shall present the construction of a family of diffeos on the surface that are Kupka-Smale (every periodic point is hyperbolic) but contains an heteroclinic cubic tangency. I shall explain the motivations for such an explicit construction.