天元讲堂(6.16):Genericity of mode-locking for quasiperiodically forced circle maps I
报告题目:Genericity of mode-locking for quasiperiodically forced circle maps I
报告人 王婧(南京理工大学)
报告时间 2017年6月16日09:00-10:00
报告地点 维格堂319
报告摘要 Using the geometrical description of mode-locking phenomenon, we show that a generic quasiperiodically forced circle homeomorphism is mode-locked:
报告题目:Genericity of mode-locking for quasiperiodically forced circle maps II
报告人 王婧(南京理工大学)
报告时间 2017年6月16日10:00-11:00
报告地点 维格堂319
报告摘要 As a conseconce of the genericity of mode-locking for quasiperiodically forced circle homeomorphisms,
报告人 王婧(南京理工大学)
报告时间 2017年6月16日09:00-10:00
报告地点 维格堂319
报告摘要 Using the geometrical description of mode-locking phenomenon, we show that a generic quasiperiodically forced circle homeomorphism is mode-locked:
the rotation number in the base is rationally related to the rotation number in the base
and it is stable under small perturbations of the system. This is a joint work with T. Jaeger and Q. Zhou.
报告题目:Genericity of mode-locking for quasiperiodically forced circle maps II
报告人 王婧(南京理工大学)
报告时间 2017年6月16日10:00-11:00
报告地点 维格堂319
报告摘要 As a conseconce of the genericity of mode-locking for quasiperiodically forced circle homeomorphisms,
we show that for a generic parameter family of quasiperiodically forced circle homeomorphisms satisfying
a twist condition, the graph of the rotation number as a function of the parameter
is a devil's staircase. This is a joint work with T. Jaeger and Q. Zhou