天元讲堂(6.23)Techniques in Ledrappier-Young Theor
报告题目:Techniques in Ledrappier-Young Theory (part 1)
报告人 谢践生(复旦大学)
报告时间 2017年6月23日09:30-10:30
报告地点 维格堂319
报告摘要 In this talk, we review the development of Ledrappier-Young theory (Ledrappier-Young entropy formula) which is a generalization of the famous Pesin theory (Pesin entropy formula).
报告题目:Techniques in Ledrappier-Young Theory (part 2)
报告人 谢践生(复旦大学)
报告时间 2017年6月23日10:30-11:30
报告地点 维格堂319
报告摘要 Pesin theoy and Ledrappier-Young theory are both based on Oseledets’ Multiplicative Ergodic Theorem. In this talk we discuss the subtle formulation of the theorem in deterministic smooth dynamical system as a first step for the two theories.
报告题目:Techniques in Ledrappier-Young Theory (part 3)
报告人 谢践生(复旦大学)
报告时间 2017年6月23日11:30-12:30
报告地点 维格堂319
报告摘要 Beside Oseledets’ Multiplicative Ergodic Theorem, other tools in probability theory are in need for establishing Pesin theoy and Ledrappier-Young theory. For this end we introduce the martingale theory and would lead the audience to see how it works in proving the theory.
报告人 谢践生(复旦大学)
报告时间 2017年6月23日09:30-10:30
报告地点 维格堂319
报告摘要 In this talk, we review the development of Ledrappier-Young theory (Ledrappier-Young entropy formula) which is a generalization of the famous Pesin theory (Pesin entropy formula).
报告题目:Techniques in Ledrappier-Young Theory (part 2)
报告人 谢践生(复旦大学)
报告时间 2017年6月23日10:30-11:30
报告地点 维格堂319
报告摘要 Pesin theoy and Ledrappier-Young theory are both based on Oseledets’ Multiplicative Ergodic Theorem. In this talk we discuss the subtle formulation of the theorem in deterministic smooth dynamical system as a first step for the two theories.
报告题目:Techniques in Ledrappier-Young Theory (part 3)
报告人 谢践生(复旦大学)
报告时间 2017年6月23日11:30-12:30
报告地点 维格堂319
报告摘要 Beside Oseledets’ Multiplicative Ergodic Theorem, other tools in probability theory are in need for establishing Pesin theoy and Ledrappier-Young theory. For this end we introduce the martingale theory and would lead the audience to see how it works in proving the theory.