短课:Introduction to L^2 Alexander torsion(4小时)

讲课人:刘毅(北京国际数学中心)       

地点:苏州大学本部校区览秀楼一楼学术报告厅

时间:2017年7月24日09:40--10:40;10:50--11:50;7月25日15:50--16:50,17:00--17:50

 

 

短课:Thurston's earthquake flow(4小时)

讲课人:苏伟旭(复旦大学)

地点:苏州大学本部校区览秀楼一楼学术报告厅

时间:2017年7月24日15:50--16:50,17:00--17:50;7月25日09:40--10:40,10:50--11:50

摘要:This short course is an introduction ofThurston's earthquake flow on Teichmuller space. Outline of the course: (1)Measured geodesic laminations on hyperbolic surfaces and Thurston'sconstruction of earthquake. (2) Convexity of earthquake and the proof ofNielsen realization theorem. (3) Representation of earthquake in shearingcoordinates.  (4) Ergodicity ofearthquake flow on moduli space.

 

 

短课:Heegaard splitting and open-bookdecomposition of 3-manifolds(3小时)

讲课人:李韬(波士顿学院)

地点:苏州大学本部校区览秀楼一楼学术报告厅

时间:2017年7月25日08:30--09:30;7月26日09:40--10:40;10:50--11:50

 

 

短课:Quantum invariants and volumeconjectures(5小时)

讲课人:杨田(斯坦福大学)

地点:苏州大学本部校区览秀楼一楼学术报告厅

时间:2017年7月26日8:30-9:30,15:50--16:50,17:00--17:50;7月27日9:40--10:40;10:50--11:50

摘要:In this series oflectures, I will introduce two of the most important quantum invariants, thecolored Jones polynomials of knots and the Turaev-Viro invariants of3-manifolds, and talk about the volume conjectures relating them to the(hyperbolic) geometry of the knots and manifolds. Roughly speaking, the volumeconjectures predict that the asymptotic behavior of the quantum invariantsmentioned above determines some classical invariants of the knot/3-manifold,such as the hyperbolic volume. My goal is to convince you that these conjecturesare promising, interesting, and maybe approachable. (A working knowledge ofhyperbolic geometry and knot/3-manifold theory is very helpful, but notrequired.)