天元讲堂(4.26)A dichotomy for the measures maxizing the entropy of some partially hyperbolic hyperbolic diffeomorphisms
报告题目: A dichotomy for the measures maxizing the entropy of some partially hyperbolic hyperbolic diffeomorphisms (part 1)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月26日09:30-10:30
报告地点 维格堂119
报告摘要 In this talk, we introduce the properties of the geodesic flow on a closed surface with negative curvature.
报告题目: A dichotomy for the measures maxizing the entropy of some partially hyperbolic hyperbolic diffeomorphisms (part 2)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月26日10:30-11:30
报告地点 维格堂119
报告摘要 In this talk, we review the results of measures maxizing the entropy and fundamental properties of partially hyperbolic dynamics.
报告题目: A dichotomy for the measures maxizing the entropy of some partially hyperbolic hyperbolic diffeomorphisms (part 3)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月26日11:30-12:30
报告地点 维格堂119
报告摘要 Consider a perturbation of the time-1 map of the geodesic flow on a closed surface with negative curvature. If both stable and unstable foliations are minimal, we prove the following dichotomy for the ergodic measures maximizing the entropy: - either they all have a zero Lyapunov exponent;
- or they are two of them, both hyperbolic, one with a positive exponent, one with a negative exponent.
The proof relies on a generalization of the analysis of mixing Anosov flows in Margulis' 1969 thesis.
Joint work with Todd FISHER and Ali TAHZIBI
报告题目:Shifts of Finite Type (SFTs) and beyond (part 3)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月27日11:30-12:30
报告地点 维格堂319
报告摘要 We describe the coding of Axiom-A diffeomorphisms as a "good" factor of an SFT given by a Markov partition. Finally we turn to the almost topological classification of SFTs.
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月26日09:30-10:30
报告地点 维格堂119
报告摘要 In this talk, we introduce the properties of the geodesic flow on a closed surface with negative curvature.
报告题目: A dichotomy for the measures maxizing the entropy of some partially hyperbolic hyperbolic diffeomorphisms (part 2)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月26日10:30-11:30
报告地点 维格堂119
报告摘要 In this talk, we review the results of measures maxizing the entropy and fundamental properties of partially hyperbolic dynamics.
报告题目: A dichotomy for the measures maxizing the entropy of some partially hyperbolic hyperbolic diffeomorphisms (part 3)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月26日11:30-12:30
报告地点 维格堂119
报告摘要 Consider a perturbation of the time-1 map of the geodesic flow on a closed surface with negative curvature. If both stable and unstable foliations are minimal, we prove the following dichotomy for the ergodic measures maximizing the entropy:
- or they are two of them, both hyperbolic, one with a positive exponent, one with a negative exponent.
The proof relies on a generalization of the analysis of mixing Anosov flows in Margulis' 1969 thesis.
Joint work with Todd FISHER and Ali TAHZIBI
报告题目:Shifts of Finite Type (SFTs) and beyond (part 1)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月27日09:30-10:30
报告地点 维格堂319
报告摘要 We review the classical theory of SFTs, starting with the basic definitions and their main topological invariant (the entropy).
报告题目:Shifts of Finite Type (SFTs) and beyond (part 2)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月27日10:30-11:30
报告地点 维格堂319
报告摘要 We then discuss their spectral decomposition, periodic points and the Parry measure maximizing the entropy.
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月27日09:30-10:30
报告地点 维格堂319
报告摘要 We review the classical theory of SFTs, starting with the basic definitions and their main topological invariant (the entropy).
报告题目:Shifts of Finite Type (SFTs) and beyond (part 2)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月27日10:30-11:30
报告地点 维格堂319
报告摘要 We then discuss their spectral decomposition, periodic points and the Parry measure maximizing the entropy.
报告题目:Shifts of Finite Type (SFTs) and beyond (part 3)
报告人 Jerome Buzzi(巴黎南大学, CNRS研究员)
报告时间 2018年4月27日11:30-12:30
报告地点 维格堂319
报告摘要 We describe the coding of Axiom-A diffeomorphisms as a "good" factor of an SFT given by a Markov partition. Finally we turn to the almost topological classification of SFTs.