报告题目:Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum


报告人:王作勤 教授(中国科学技术大学)


时间:2022925 (星期日) 10:00-12:00


地点:苏州大学本部校区维格堂319


摘要:In 1980’s Colin de Verdiere proved that on any closed manifold of dimension at least 3, one can construct a smooth metric with arbitrarily prescribed finite parts of eigenvalues. Later on Lohkamp showed that one can further prescribe the volume. In this talk, I will explain how to extend their results to Dirichlet eigenvalues on manifolds with boundary. This is based on an ongoing joint work with He Xiang.


报告人简介:王作勤,2008年获得麻省理工学院博士学位,2008年至2013年先后任职于约翰霍普金斯大学和密歇根大学。2013年回国至今,任中国科学技术大学教授、博士生导师。主要研究领域为谱几何、微局部/半经典分析、辛几何等,研究成果发表于J. Diff. Geom.Geom. Funct. Anal.J. Funct. Anal. 等国际一流期刊。


邀请人:张影 教授