报告人:宋伦继 副教授

 

报告时间:2022/11/01 13:30-14:30

重复周期:2022/09/13-2022/12/27 10:00-16:00, 每周 (周二)

 

腾讯会议:932-7827-6364

点击链接入会,或添加至会议列表:

//meeting.tencent.com/dm/O9arhwZrgNOr

 

报告人简介:兰州大学数学与统计学院副教授、应用数学博士、美国阿拉巴马大学博士后,2020年首批国家一流本科课程负责人,获2021兰州大学隆基教育教学骨干奖。从事间断Galerkin方法及弱有限元方法的数值理论与计算、无界区域高频时谐波散射问题高精度算法研究、间断类型有限元解的PPR 梯度重构方法等研究。在J. Comput. Phys., J. Sci. Comput., Appl. Numer. Math.等国内外学术期刊发表学术论文30篇,主持国家自然科学基金面上项目,结题国家自然科学基金、省级项目、中央高校基本科研项目等7项。

 

报告摘要:This paper is concerned with a multi-domain spectral method, based on an interior penalty discontinuous Galerkin (IPDG) formulation, for the exterior Helmholtz problem truncated via an exact circular or spherical Dirichlet-to-Neumann (DtN) boundary condition. An effective iterative approach is proposed to localize the global DtN boundary condition, which facilitates the implementation of multi-domain methods, and the treatment for complex geometry of the scatterers. Under a discontinuous Galerkin formulation, the proposed method allows to use polynomial basis functions of different degree on different subdomains, and more importantly, explicit wave number dependence estimates of the spectral scheme can be derived, which is somehow implausible for a multi-domain continuous Galerkin formulation.

 

邀请人:杜锐