报告题目:The second gap on complete self-shrinkers

报告人魏国新(华南师范大学)

  间:2022年12月1日(周四)10:00-11:00 

腾讯会议ID:799-878-746

 

摘要:We discuss complete self-shrinkers in Euclidean space and prove that an $n$-dimensional complete self-shrinker in Euclidean space $\mathbb{R}^{n+1}$ is either $\mathbb{R}^{n}$, $S^{n}(\sqrt{n})$, or $S^k (\sqrt{k})\times\mathbb{R}^{n-k}$, $1\leq k\leq n-1$, if the squared norm $S$ of the second fundamental form, $f_3$ are constant and $S$ satisfies $S<1.83379$. We should remark that the condition of polynomial volume growth is not assumed.

 

报告人简介:魏国新,华南师范大学教授,博士生导师,2018年被聘为广东省珠江学者特聘教授。研究方向是微分几何,在 Trans. Amer. Math. Soc.,Comm. Anal. Geom.,Math. Z., Calc. Var. Partial Differential Equations,J. Differential Equations, Sci. China Math. 等数学期刊上发表论文50余篇,主持(完成)多项国家自然科学基金项目。

 

邀请人:王 奎